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Abstract 

This paper addresses a problem that has arisen in building 
distributed systems in which incomplete tmst exists and 
program composition is necessary. The problem is to permit 
authentication for both access control and accounting when 
cascading invocations. The problem can be identified as one of 
providing cascaded authentication. We have developed a 
mechanism we call pussports that are passed along with each 
stage of the cascade and digitally signed at each transition. The 
information thus signed is that which is critical to the 
authentication. The contributions of the WO& axe both in 
recognizing the problem and in devising a solution that is 
efficient enough to be usable, although there will be some cost 
associated with such a mechanism. 

1. Introduction 
Cascaded authentication is the solution to a set of problems 

that have arisen from confederations of autonomous systems. 
The problems occur when disparate computer systems are being 
called upon to cooperate in the absence of complete trust of 
each other. Fwthermore, the systems are utilized in a cascaded 
fashion, where one invokes a second, which invokes a third, and 
so on, until the fiial service is invoked. The particular problem 
addressed in this paper is providing authentication in this 
environment given that both accountabiLty and access control 
may be required. 

The paper begins with an example to explain the problem 
further, and then discusses related work. Section 2 presents the 
assumptions and goals that must be met by the solution. We 
can then discuss providing cascaded authentication by means of 
a mechanism called a passport in Section 3. Since cascaded 
authentication is based on pairwise, lower level authentication, 
a typical pairwise authentication mechanism, that is the one 
used in this project, is described in Section 4. Before 
concluding, Section 5 describes how passports wiU be supported 
in the Mercury System. Section 6 summarizes the work 
presented here and the contributions of this work 

2. The Problem 
In order to understand the problem, we will F i t  consider a 

hypothetical example of a need for cooperation in the face of 
incomplete trust. Because of the incomplete tmst. access 
control and accounting are required. Both of these require 
authentication, the process of validating clients. The example 
leads to a general statement of the problem, assumptions and 
goals. The section concludes with a summary of the works that 
have addressed similar or related problems or parts of our 
problem. 
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Consider making travel arrangements. The travel 
arrangements will be made from an office workstation with a 
server running at a travel agency. The trip will include ak 
travel, prepaid car rental, and a prepaid stay at a hotel. The 
company of the traveller has preferences for airlines and car 
rental agencies, and the hotel is determined by the nature of the 
meeting. Furthermore, there is only one travel agency from 
whom the accounts payable office at the traveller's company 
will accept direct charges, although they will also accept direct 
charges from car rental agencies and the hotel on behalf of the 
travel agency. The traveller indicates through the local 
workstation to the online travel agency service the dates and 
location of the trip, and the hotel that is required. The travel 
agency handles the plane reservations but will not deliver 
tickets until accounts payable has guaranteed to pay for them. 
Each of the other organizations involved, the car rental agency 
and the hotel will not accept reservations without prepayment of 
a pelrentage of the total reservation. Again the accounts 
payable department must guarantee payment. The accounts 
payable department has restrictions as well. They will only 
accept charges that can be authenticated as having originated 
from the traveller. In addition, they require verification of the 
organization requesting payment, especially the travel agency, 
since they will only accept bills from the one travel agency. In 
other words, the travel agency needs to be able to act on behalf 
of the traveller. In addition, it needs to be able to allow the car 
rental agency and hotel to act on its behalf and in turn on the 
traveller's behalf. To summarize, the problem is to permit the 
needed but limited authentication without undue burden on the 
participants and resources or undue delay. 

In order to understand the scope of the problem, it is 
important to provide a model of the threats of concem here. 
The discussion here is based on the analysis and terminology 
presented by Voydock and Kent'. The reader is referred to that 
paper for a full description of the possibilities. 

Part of understanding the threat model is identlfying our 
assumptions about the environment. First, there is an 
assumption that at least some of the communication is 
transpoaed over LANs, which are easily tapped providing 
intruders with easy access to network traffic. Hence, the traffic 
is subject to passive attacks. On the other hand, a second 
assumption is that the environment is not considered 
particularly hostile. We must assume that there will be 
situations in which the contants of messages must be kept 
private although this may not be the general case. Therefore, in 
terms of the threat model and passive attacks, there will need to 
be a mechanism for providing privacy, but the other forms of 
passive threats, traffic analysis and violation of transmission 
security axe not considered part of our threat model. 

In the area of active threats. those that involve threats to 
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authenticity are of utmost concem although several others are of 
concem as well. Attacks on authenticity can be attempted by 
either replaying information that was used correctly by someone 
else or by modifying the messages as they pass on the network. 
Both are problems and the possibilities of their occurring must 
be reduced In addition to modification of authentication 
information, modification of the message stream can take two 
other forms considered potential threats in this environment. 
These are modification of the contents of individual messages 
and reordering of a stream of messages. If these and privacy are 
of concem. a chain encryption scheme will address all three at 
once. Other mechanisms exist for addressing one without the 
others. A final area where there is often concem about threats is 
in denial of service. Although that may be considered a 
possibility, we take the position that it is identified and 
prevented by the intervention of humans and we are not 
providing a mechanism to address it in this project. 

A requirement for authentication that is not part of the threat 
model is efficiency. Efficiency takes two forms. First, any 
mechanisms proposed to achieve authentication must be 
efficient. 'Ihis means that the overhead in using them must be 
reduced as much as possible. Overheads occur in the usage of 
resources. In the case of communication, expenses can occur in 
use of processing time, storage, and the communication 
medium. All must be kept as low as possible. The second form 
of efficiency is that of minimizing the cost of indicating that one 
does not want to make use of the authentication or other 
security mechanisms. Since, in the case of a university or other 
fairly friendly and cooperative environment, most 
communication wil l  not require the overhead of complex 
authentication and security measures, it should cost as little as 
possible not to use these mechanisms. Of course, this also 
implies the ability to turn them off. Efficiency is paramount in 
both its forms, when adding mechanism to communications 
protocols. 

Although authentication, access control and accounting are 
closely related and mechanisms exist for addressing parts of all 
three simultaneously (as our does), the focus of this paper is on 
authentication. In light of the above discussions of the 
problems and assumptions we can now consider the actual goals 
for a solution to the problem to be: 

*Unforgeability: it is impoaant that 
something be passed to the final destination 
to be used for access control and 
accountability and that there be a mechanism 
not only for trusting that information be 
tamper-proof, but also that it be verifiable. 

*Accountability: it is often necessary to be 
able to track the route of cascaded requests 
as part of providing access control. 
Therefore, identification of each participant 
in the order of their participation is 
important. For example, it is important to 
the accounts payable office that the requests 
from the car rental agency and hotel have 
come originally from the traveller and thence 
through the travel agency. 

Discretionary restriction: at each transit 
point the client at that point may want to 
restrict access privileges of any service 
further down the route before the final 
destination. For example, returning to the 

example of travel arrangements, if the 
traveller has given permission to charge up 
to a certain amount for the trip, the travel 
agency may want to further restrict the 
amounts that the car rental agency ana hotel 
can charge, keeping the remainder for air 
travel. 

Modularity: it is important. especially in a 
widely distributed environment, that a client 
not need to know the internal structure and 
implementation of the services it invokes. In 
a situation such as a global network, remote 
services at autonomous, but loosely 
cooperating organizations either may be 
hidden for local security reasons or may 
change unpredictably. Returning to the 
traveller's example, the traveller should not 
need to know whether the travel agency will 
bill the accounting office for the car and 
hotel or pass those actions off to the 
respective organizations. 

*Independence: one of the advantages of a 
distributed environment, especially when 
cascading as described above is available, is 
that the client need not be available when the 
request is being acted upon. Therefore, a 
goal of this project is to permit independent 
activity, even when authentication is 
required. In the case of the traveller, the 
client should not need to be available for 
verification of requests since wait listing of 
reservations may cause those to occur at any 
time. The client may not only go home in 
the evening expecting the travel agency to 
continue wolking on the travel 
arrangements, but may even tum off the 
workstation. One should not need to depend 
on later verification from the originator or 
any other participant. 

Combining of identity: i t  is often necessary 
to be acting as a combination of oneself and 
a client. This was the case of the travel 
agency requesting payment from the 
accounts payable office. Only because a 
request comes from the travel agency on 
behalf of the traveller might the charges be 
accepted. 

As a preliminary to presenting the mechanism that will meet 
these goals it is first useful to understand the work that has been 
done on this subject and related areas. As mentioned above, 
Voydock and Kent' provide the best analysis in the public 
literature of potential components of threat models. Such a 
study is always an important part of understanding security 
requirements. Pairwise authentication, which is an antecedent 
and supporting mechanism for what will be proposed here, has 
been investigated by many researchers. Several early works on 
the three way handshake are by Sunshine2 and the TCP 
protocol3 for initializing reliable connections and Needham and 
SchroedeP*5 for authentication. Otway and R e s 6  have 
suggested a more symmetric refinement of the protocol for 
mutual authentication. Either of these will suffice for pairwise 

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore.  Restrictions apply. 



authentication as a supporting mechanism in the work presented 
here. The work here is based directly on Needham and 
Schroeder, but incorporates Birrell's ideas of re-authentication 
as well7. Birrell et al.' have suggested a mechanism for 
cascading trust in authentication servers in cases where no 
single authentication server is trusted by the client and server. 
It is possible to use such a scheme in conjunction with either of 
the pairwise authentication schemes mentioned above. For the 
purposes of this work we will assume that either a single trusted 
authentication service exists or that cascading as discussed by 
Birrell et al. is available. Israel and Linden' have pointed out 
the need for accountability in building distributed systems and 
Karger'O proposed a mechanism for distributing tickets to be 
used for proxy login. The work here can be viewed as a 
generalization of the proxy login mechanism. In the area of 
authentication, another strong influence on this work was the 
development of the Kerberos authentication service by Miller 
and Neuman". Here, although a slightly different handshake 
protocol was used. the idea of acquiring a collection of tickets 
with timeouts as first suggested by Denning and SacCO'* for 
later use in authentication was paramount. Since the purpose of 
developing these authentication mechanisms has been to embed 
them in the Mercury System13, that project is discussed in 
Section 5. 

3. Cascaded Authentication 
As suggested in the example about travel arrangements it is 

useful in a distributed environment to be able to allow a remote 
service to act on one's behalf, but retain some degree of control 
over the actions that the remote service does on one's behalf. 
This can be generalized to say that A wants B to see that an 
operation is done on A's behalf with some of A's privileges at 
C. That activity may be handed off to D or E, before the 
requests arrive at C and A wants some control over these 
handoffs, but should not necessarily need to know all the details 
of these handoffs. We want to capture the idea of handoff and 
permit A to set bounds on the actions that B can take on A's 
behalf. In turn, B may want to limit further what D can do on 
behalf of A and B. Of course, in the end, C will make the final 
decisions about control of access in light of A's statements 
about who can act on its behalf. 

The mechanism proposed here to solve this problem of 
handing of limited authentication is called a passport. The 
passport identifies the originator and is digitally signed at each 
transit point. so that each participating transit point is 
identifiable. Furthermore, it includes the limits set or further 
constrained at each transit point. Digital signatures imply 
encryption. Therefore, in order to give each transit point the 
information about the constraints set by previous transit points, 
the constraints are also transmitted in the clear. We will 
examine the mechanism in more detail and then enumerate how 
it meets each of the goals set out above. 

The two most important parts of a passport are the 
unforgeable identity of the transit points and the constraints or 
limits on the actions for which it can be used. The constraints 
are passed as data and identitied by encryption with a key that 
only the owner (and in the case of a secret key scheme, the 
authentication or key distribution server) knows. At each stage, 
a transit point takes the passport it has been given, adds any 
further constraints or limits it wishes to impose and encrypts 
this new information along with the encrypted part of the 
passport it received. This sort of re-encryption is repeated at 
each stage until the passport e v e s  at the final service. There 
the whole package is sent to the authentication server (in the 

case of a secret key mechanism) for verification by deciphering 
in the reverse order of the encryption. This is demonstrated in 
more detail below. 

It is important to understand how much trust is required and 
the cost of a lack of trust. No trust is required, since each transit 
point is free to verify the passport by sending it to the 
authentication service. Presumably this requires a remote 
access, at the cost of a round trip to the authentication service. 
Therefore modification in transit can be discovered any time it 
is suspected. 

In order to verify the passports, several pieces of information 
are needed. First, the identity of each transit point must be 
known. Hence, these must be included in cleartext. Each 
transit point adds its own name at each stage. In addition, it is 
important to provide a check that the encrypted material has not 
been modified. At each stage, the transit point includes in the 
encrypted material the name of the transit point to which the 
passport is being sent. When the authentication server 
deciphers the passport, it has a simple check that the name of 
the owner of the previous encryption key is in the next set of 
deciphered data. 

There are two other aspects of passports that are important 
for effectiveness of the design. The first is the information that 
is passed in the clear, and the second is the inclusion of a nonce 
in the encrypted material. As mentioned before, each transit 
point includes its own name in the clear. In addition, each 
transit point includes its own constraints in the clear for two 
reasons, efficiency and verification. If the constraints were only 
included in the encrypted material, then each transit point that 
needed to know them would be forced to decrypt them, which, 
in the case of a secret key scheme, would mean invoking the 
authentication server, even if tme verification were not the 
objective. In addition, including the constraints in the clear 
provides a further check when verification is done that the 
information that was signed has not been tampered with. The 
inclusion of the names in the cleartext does this as well, in 
addition to ident@ing to the authentication server which keys 
to use for decryption. 

A nonce is included in the original passport created by the 
client. It must be the first item encrypted. The reason for t h i s  is 
strictly for security. All the other information that is encrypted 
is public knowledge and when coming from a particular client is 
always encrypted with the same key. Therefore, it is 
susceptible to cleartext attack. Including an unpredictable 
number that is only used once means that the material that is 
encrypted is not known text. Furthermore, since it is important 
to chain the encryptions, all text encrypted after the nonce will 
be affected by the encryption of the nonce. As we will see 
below, if this degree of threat is not of interest, it is easy to omit 
the nonce. It is only needed in the original passport from the 
client since each succeeding encryption en route will include 
this original. 

Constraints or limits on the use of a passport have been 
mentioned above. "hey fall into several categories. They may 
restrict the cascaded request itself, for example by setting 
restrictions on the path that can be used, or they may set bounds 
on the actions that can be taken at the final destination. We can 
identify several types of constraints on the cascaded request. It 
may be important to limit the number of hops that a request can 
make. For example, in the travel agency example, the accounts 
payable office might have been willing to take requests from 
any of several travel agencies, but may refuse to allow one to 
hand a request off to another, so there might have been a limit 
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of two on the number of hops. Another limit might be on the 
identity of the transit points. In this case, the accounts payable 
office would only take requests from certain travel agencies, 
certain car rental agencies and certain hotels, but this constraint 
can be separated from the number of hops. It also may be the 
case that the traveller states that the request must be used within 
the next 24 hours. This is one mechanism for limiting potential 
misuse of the passport. Another would be a limit on the number 
of times that a passport could be used. Each of these constraints 
can be checked either by transit points along the way or the 
final destination. Of course, the final server must verify them 
all. 

In addition, there may be constraints on the activities at the 
server. For example, it may be that a holder of the passport can 
only perform a subset of al l  the operations available on the 
object in question. In other words, the travel agency will have 
permission to decrement the travel part of the budget for the 
traveller’s account, but will not have permission to look at the 
balances. In addition, there may be limits on the values of the 
parameters. There may be an upper limit on the amount that the 
planned trip can cost. The accounts payable will refuse 
amounts over certain limits. If the travel agency wants to hand 
off parts of the trip to the car rental agency and the hotel, it must 
hand off part of the limit that it has received to each. This is a 
case in which further restriction plays an important role. Other 
constraints are certainly imaginable, but these appear to be an 
important set. 

We can now examine the creation and use of passports. 
Suppose A wants B to act on its behalf in doing something at 
C. B. in tum will hand off the activity to D. which in tum will 
make the request of C on A’s behalf. Throughout this and the 
remainder of the paper a secret key system is assumed, although 
conversion to a public key system would be straightforward, as 
Needham and Schroeder4 demonstrated. We will use the 
following notation: 

the material within the brackets is encrypted 
with key K. 
names of principals 

the i’th nonce unique to module A 

a secret key of module A, known only to A 
and the authentication server 

the constraints set by A in this passport 

{ t K  

A. B, C, D 

I,, 
KA 

CA 
Therefore, A will pass to B: 

In tum, when B wants to hand the passport off to D, it will send 

Now, B has encrypted both A’s signed statement and its own 
constraint information, and then added to the cleartext its own 
relevant information. Thus when D receives the information, if 
it trusts B, it need not request that the authentication server 
verify or decipher the conditions’, although that can be done at 

‘It should be noted that verification of a digital signnturc in a secret key 
system, M dcsribcd by Nccdhpm and Schroedcf requires accessing the 
autkntication server. 90 it should not be done lightly. In a public key 
systcm it involves dccryption with t k  public key. Eithcr case will 
probnbly require a network access. 

any stage. They are available in the clear. D in tum will need 
to sign the request as well before sending it to C. This can be 
done in the same manner as B did. D may also want to add its 
own conditions, to be interpreted by C. At each stage, it is 
necessary to trust the sender of a passport. Therefore a passport 
can only be sent on a connection where pairwise authentication 
already exists. It is possible to piggy-back sending a passport 
onto a pairwise authentication protocol; this will be discussed 
below in Section 4. Because encryption is necessary in order to 
provide digital signatures in passports, the supporting pairwise 
authenticated connection need not also encrypt all its data. 

A passport can be requested or sent unsolicited at any time, 
but the passport must come from the client. A passport 
authenticates the client, but does not authenticate the server, 
since no information flows from server to client. In addition to 
changing the identity of the principal or principals on whose 
behalf an action or series of actions occur at the server. the 
conditions limiting that action or the conditions of invocation of 
the requests can be changed as well. 

With the passport mechanism in mind it is now valuable to 
review the goals set out for solving the problem of cascaded 
authentication. For each goal, the way in which it is achieved 
will be indicated. 

Unforgeability: unforgeability of passports 
is achieved by use of the private keys of the 
participants or transit points. Each key is 
known only to the individual owning 
participant or principal and the 
authentication server. Since the 
authentication server is trusted with this 
information it can venfy the identity of a 
participant based on that private password. 

Accountability: by including the names of 
the participants along the way, and in 
paxticular in the encrypted part of the 
passport where they cannot be modified, 
accountability is provided. We are assuming 
that each participant will check that the name 
of the transit point from which it receives a 
passport matches the name included in the 
cleartext portion of the passport. In addition, 
we assume that each point encrypts using its 
private key. In the case of a single node not 
doing this, it will be detected by either the 
next transit point down the line, or at worst 
during verification. In the case of two or 
more transit points working in collusion, not 
much can be done with this mechanism other 
than being sure that the fist correctly 
operating transit point receives a comctly 
identified and encrypted passport. There 
may be stages in between that are not 
identified. 

Discretionary restriction: the ability to 
include constraints or limitations at each 
transit point provides for cascaded 
discmionary restrictions. 

Modularity: by superimposing signatures on 
the passport in such a way that verification is 
done only at the end, modularity is achieved. 

I59 
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Each transit point needs to know only about 
the one to which it is sending the passport 
and does not have to know about how that 
transit point will achieve its job. 

Independence: again superimposing 
signatures and permitting such constraints as 
time limits on a passport's validity allow for 
independent operation. Since verification 
can be held off until the final destination is 
reached and at that time only the 
authentication server needs to be involved, 
independence is achieved. As noted earlier, 
the less trust exists, the more likely it will be 
that the authentication server wi l l  be asked to 
venfy a paaport at transit points. 

*Combining of identity: by cascading and 
superimposing signatures it is possible to 
identify all the participants in a request 
thereby allowing the server to accept 
requests only when tha required combination 
of principals is involved, 

In summary, at this point we have considered most of the 
issues surrounding authentication required in cascaded 
invocation. We began with an intuitive understanding of the 
sorts of cases in which the problems arise, for example the case 
of the individual attempting to make travel arrangements 
including airline tickets and prepayment for other reservations. 
We then set the specific goals of the project within the 
constraints of our basic assumptions of the environment, 
including an analysis of the threat model. The solution was one 
of a mechanism called pussports that can be unforgeably 
stamped or signed at transit points along the way. This 
depended on pairwise authentication of the participants. so that 
will be addressed briefly in the next section, followed by a short 
discussion of the the application of this WO& to an existing 
heterogeneous distributed system, in particular, the Mercury 
System at hflT. 

4. Pairwise communication 
As mentioned above in Section 3, the passport mechanism 

depends on the pairs of transit points that are exchanging 
passports being able to trust the identity of the transit points 
from which they receive passports. In addition it would be 
useful for the sender of a passport to trust the identity of the 
recipient. If each receiver trusts the sender of a passport, at 
each stage the transitions can be checked at the receiver for the 
validity of the path. Providing trusted authentication in both 
directions will avoid some amount of work. 

There are numerous examples in the literature of pairwise 
authentication mechanisms, most notably the work of Needham 
and Schroedep that addresses this problem using both secret 
key and public key mechanisms. In the case of a secret key 
mechanism, four messages must pass between the two 
principals as well as two preliminary messages between one of 
the clients and the authentication server. Otway and Rees6 have 
proposed a mechanism that requires four messages only for 
each pairwise authentication, but the problem is that it requires 
access to the authentication server for each pairwise 
authentication. It is possible, as has been shown by Miller and 
Neuman" in Kerberos, to batch the requests to the 
authentication server, and then provide timeouts on the tickets 

thus acquired. Therefore, the authentication server need not be 
involved in each pairwise authentication. By doing this, and 
permitting reuse of tickets when re-authentication is required, 
the average number of messages in a scheme similar to 
Needham and Schroeder's can be brought arbitrarily close to 
four. Since the focus of this work is on cascaded authentication 
and not pairwise authentication, we will choose to use a scheme 
similar to Needham and Schroeder's. as well as the three-way 
handshake of T@ and Denning and S a c ~ o ' ~ .  This will allow 
for more independence from the authentication server, since it 
need not be available whenever authentication is needed. 

Besides to the requirement of bilateral authentication, there is 
an additional requixement that an authentication server be 
provided that is trusted by both principals, or at a minimum 
there be one that each trusts and they trust each other. This can 
be extended to say that the principals involved must trust 
authentication servers that fall into a single closure of 
authentication servers that trust each other. B k l l  et al.* have 
demonstrated an algorithm for achieving this. For simplicity a 
single authentication server will be assumed here.. 

In addition to the notation used in Section 3, the following 
will be used to outline a possible protocol for pairwise 
authentication. 

T a time stamp 

CK a conversation key generated by the 
authentication server and exchanged by to 
authenticating principals 

AS the authentication server 
Communication will be assumed to occur instantaneously 

and lines with arrows will indicate the direction of flow of a 
message. Time moves down the page. 

A AS 

B. IA 

> 
{IA,B,CK,T, I c K , T . A ) s ) K ~  

For principal A to acquire a ticket to talk with another 
principal B and an encryption key to be used for that pu~pose 
requires two messages. The first is sent in the clear. There is 
no need for encryption here, since the only information is the 
identity of the principal B and a nonce I The nonce is a 

number that is unique and provides the basis for a challenge of 
the authentication server by A. The authentication server meets 
the challenge by retuming to A a message that is encrypted with 
A's private key KA (known only to A and the authentication 
server) containing IA , @roving that the authentication server 
knew A's key), B's identity, CK the key for communication 
between A and B, T the time to live for that key, and an 
unforgeable ticket that A can later hand to B. The ticket is 
unforgeable because it is encrypted with the secret key known 
only to the authentication server and B. The ticket is used by 
sending it to B which will use KB to decrypt it and will find A's 
name inside; this could only have been done by the 
authentication server. Further verification of A by B will be 
seen below. This protocol allows A to venfy the response to its 
request as coming from the authentication server and provides a 
secret short-lived key for authentication and encryption with 
B. The fact that the keys are short-lived is part of the 

A; 

1 
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mechanism for preventing the forms of false authenticity 
identified by Voydock and Kent. If a key is compromised or 
stolen, its period of validity is limited. Authentication and key 
exchange for encryption can be piggy-backed on connection 
initialization, but can also be repeated at later times if the 
information has been deleted or needs to be changed. The 
reasons for repetition or modification are related to permitting 
connections to quiesce or be used on behalf of other principals. 
These reasons for repeated authentication will be discussed 
further in Sections 5. 

Efficiencies can be achieved here in two ways. The first is 
suggested by Kerberos, in which requests to Kerberos can be 
batched. merefore, rather than incurring the ex nse of two 

not decrypted here) for each connection created by A, there will 
be two messages and 2N+1 encryptions and 1 decryption for N 
connections created by A. Of course this can only be done when 
A can p d i c t  the N connections. There is a tradeoff in 
acquiring a set of keys, because they come with timeouts. If 
they are not used within their periods of validity, there is a 
wasted cost of transmission of them. The second form of 
efficiency occurs if the authentication server and the location 
registry are the same, allowing requests for finding principals to 
include the acquisition of the encryption key and ticket for a 
connection to each module. Such efficiencies become 
important during usage of such mechanisms. 

messages and two encryptions and one decryption r (the ticket is 

Once the ticket and encryption key are known, A can initiate 
an authenticated connection with B, as shown here. 

A B 

\ 

A opens the communication by sending the authenticated ticket 
previously acquired from the authentication server and a nonce 
encrypted with CK to B. B uses KB to decrypt the ticket, 
verifying that this ticket was supposed to have come from A, 
and learning CK and T the timeout for it. CK is then used to 
decrypt the nonce. Both this nonce and I the nonce sent by B 
to A are challenges. The way the challenges are met is by the 
recipient decrypting the challenge, modifying it in a known way 
(in this case subtracting one), and retuming the modified 
version re-encrypted. Only if the key is known by the recipient 
can this be done correctly, and therefore this proves the identity 
of the recipient. Neither A nor B will send real information, the 
data or reply, until its challenge of the other has been met 
successfully. So A only sends its data in the third message, 
since B replied successfully to the challenge in the second. If A 
also includes its reply to B's challenge in the third message, 
then B can reply to the data in the fourth message. The 
challenges and responses using the nonces directly counteract 
the threats of "playback' and "false identity". Passing a 

B, 

'An cxryption costs the s m m  as a decryption in the DES. 

passport can occur once A trusts B; therefore the passport can 
also be sent in the third message of the algorithm along with the 
data. In fact, it must be sent before the data since it implies a 
possibility of changing the identity of the principal on whose 
behalf the information in the data is to be used. 

Attacks on integrity, ordering of messages and release of 
message contents can be prevented by use of encryption of the 
message data and replies. Since a conversation key has been 
exchanged this is possible without the threat of compromising a 
long-lived key, but involves encryption of everything on the 
connection. The basis for that encryption, the seed for the 
chained encryption, is the same key CK, known by A and B. 

The cost of creating an authenticated connection must be 
counted in terms of both additional messages and number of 
encryptions and decryptions. The protocol laid out above 
requires two additional messages beyond the data and reply 
messages, plus an average of, at most, the one additional 
message for accessing the authentication server as described 
above. There are 7 encryptionddexryptions (encryption of the 
ticket is done in the authentication server and not part of this 
protocol) in the handshake, and an average of at most one and a 
half in accessing the authentication server. If the connection 
requires encryption of data there is the additional expense of 
that encryption as well. 

It is important to address the effects on authentication of 
special or exceptional conditions on the connection. This will 
be considered in Section 5 once the Mercury System itself has 
been reviewed. 

To summarize, for pairwise connections, authentication can 
be provided by mechanisms similar to those of Needham and 
Schroeder or a w a y  and Rees. We have chosen a scheme 
approximating the former in order to avoid interactions with the 
authentication server at the time of each authentication. This 
pairwise authentication is necessary as part of the support for 
cascaded authentication as we have realized it in passports. 

5. Design of an implementation 
The purpose of designing authentication mechanisms is to 

permit use of them. Therefore, it is valuable to understand the 
usage of passports and their supporting mechanisms in the sort 
of distributed system for which they were designed They were 
designed specifically to solve authentication problems in the 
Mercury System, a heterogeneous system at MlT. 

The Mercury System has two high level goals of importance 
to this piece of the project, program composition and 
heterogeneity. Program composition means that it should be 
possible within the system to invoke programs or services 
across language boundaries. The second goal is suppoxting the 
existing heterogeneity inherent in the choice of languages, 
operating systems, and hardware. The combination of these two 
has led to a commitment to providing a common underlying 
communications semantics that is reflected in each language as 
an extension to that language. These extensions are known as 
the language veneers. 

The underlying model has two parts that are relevant to 
authentication and access control: the model of active entities 
and the semantics of invocation. It is necessary for 
authentication to understand the nature of a principal in 
Mercury. Figure 1 depicts a layered model of Mercury. A 
module is a principal, the unit of authentication. Mercury 
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consists of modules each running at a single location, although 
there may be more than one module at a location. A module 
can be thought of as a service or program running at a specific 
location, having remotely invocable procedures or ports. In 
addition, a module contains one or more threads of control, 
known as ugenrs. A remote invocation is done by an agent in 
one module to a port in another. Furthermore, invocations on a 
group of ports for a single module from a single agent can be 
sequenced. A set of streams 
between a pair of modules can share a connection. Thus a 
module is a principal and resides at a single node. It provides 
ports and supports a collection of agents. Messages flow 
between two modules on a bidirectional connection, and a 
connection can support a collection of one-way streams 
between agents and sets of ports. 

This is hown as a stream. 

Passports 

Passports 

Pairwise Auth.  

Connect ion 

Network 

Figure 1: Communication in Mercury 

The usage of pairwise authentication and then passports on 
top are mapped onto the Mercury model of computation as 
follows. A connection will support pairwise authentication, 
because each module is a principal and a connection is the 
means of communication for a pair of modules. When an agent 
invokes a port it will do so as a component of its owning 
module, unless it has been given a passport to act on some other 
module's behalf. The agent will be using a stream for 
invocation of a set of ports. If the stream is to be used on behalf 
of another module, the agent will hand a passport to the 

receiver. The passport will then be handled as described in 
Section 3. It may be verified or handed along further. If the 
stream is to be used on behalf of another module only 
temporarily, yet another passport will be passed along later. If 
the stream is to be retumed to being used on behalf of the 
original module, a simplified form of a passport can be used, 
essentially null, indicating a reversion to the original state. 

We can now consider means of providing greater efficiency, 
in addition to those means already mentioned of piggy-backing 
a passport on connection level authentication and the null 
passport indicating a return to the default state of authentication. 
Two other mechanisms to improve efficiency are possible in 
creating passports, flags indicating the presence or absence of 
particular constraints and hashing the constraint values. Since 
every constraint is optional, we will use a one bit flag for each 
constraint identified in Section 3 indicating its presence or 
absence. Thus indicating no constraints requires one bit for 
each potential constraint. If constraints are present, using a 
pre-arranged hashing function on the constraints in both the 
encrypted and cleartext forms again pennits a reduction of the 
number of transmitted bits. Thus we can reduce to a small 
number of bits the ability to not use authentication, and reduce 
the number of bits for the contraints by hashing. 

There are three special conditions that must be considered 
when building the pairwise authentication mechanisms: 
connection quiescence, connection exception of failwe, and 
authentication or encryption failure. First, Mercury permits a 
connection to quiesce, thus allowing information about it to be 
forgotten by one or both ends of the connection. In this case, 
re-authentication must be done when the connection is re- 
established. This is not as simple as it may seem, because, 
although a connection is bidirectional, it is not completely 
symmetric since one end or the other acquired a ticket from the 
authentication server in order to initiate the authenticated 
connection. There are several possible solutions to this 
problem. One is that the origianl initiator of the connection 
acquired two tickets, one for each direction, that have not been 
forgotten. In this case, either end may re-initialize the 
connection. A second is that the original holder of the single 
ticket still has it and re-initializes the connection, assuming it 
knows to do so. If both of these fail, a new ticket must be 
acquired. In any case, this is not a difficult problem, but must 
be addressed. 

The second special condition that must be addressed is that 
of handling authentication and encryption in the face of an 
exception on or a failwe of the connection. When an exception 
occurs at the connection level, causing the connection to break, 
re-synchronization will be needed if chain encryption was being 
used on the connection. In addition, if either end distrusts the 
authenticity of the other, re-authentication may be required as 
well. 

The third and final exceptional condition that must be 
considered is the failure of authentication or encryption, and 
how that will affect the connection on which it is occurring. If 
there is some failwe in either authenticating or the 
cryptographic activities, this must have the effect of breaking 
the connection. The reason for this is that the authentication 
and encryption are begin performed only because one or both 
participating modules require it. If that cannot happen, the 
connection should not be used. Once valid authentication can 
be re-established, the connection can be reused. 

We must also understand what happens under three 
interesting conditions on streams: the stream breaks, 
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authentication/authorization fails, and the stream quiesces. 
First, if the stream breaks for some reason unrelated to 
authentication and authorization, but the state of the stream is 
not forgotten, nothing needs to be done in terms of 
authentication in order to restart the stream. In contrast, if 
authentication or authorization fails, the stream must be put into 
the broken state because succeeding operations should fail, until 
the authentication or authorization problem has been resolved. 
Therefore, once the stream has reached the broken state due to a 
problem with authentication, in order to restart, a valid passport 
must be sent to the server. To avoid the need for two types of 
broken state, one for a security failure and one for everything 
else, we require that a valid passport always be sent on 
restarting a stream. (It should be noted that a valid passport can 
be the null passport representing the module in which the agent 
resides.) The final issue is what to do if the stream quiesces and 
therefore can forget its state. In this case. since the principal 
may have been changed and may not be agent’s own module’s 
principal and that information can be forgotten, when the stream 
is restarted a passport will have to be sent as well. Since all 
stream information can be forgotten and since, for a particular 
stream, several passports may be used at different times, 
passports should be stored somewhere besides only with stream 
state. 

6. Conclusion 
In this paper we have investigated the problem of cascading 

and combining authentication as invocations of remote services 
are cascaded. The problem can be partitioned, so that pairwise 
authentication is provided first and the cascading can be done 
on top of that. Furthermore, we have demonstrated that 
efficiency is possible where needed, although it will always be 
the case that if encryption is required, there will be costs 
associated with it. The mechanisms proposed for achieving 
these kinds of authentication are based largely on the work of 
Needham and Schroeder, Birrell, and Karger. The contributions 
of this work are twofold. The first is in the recognition that a 
problem has arisen from the combination of distributed systems 
and incomplete trust among the components of such a system. 
The problem is that of cascaded authentication. The second 
contribution is in the generalization of the ideas of capabilities 
and tickets for proxy login here called passports that are a 
solution to the problem of cascaded authentication. 
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