
CASCADED AUTHENTICATION

Karen R. Sollins

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Ma. 02139

Abstract

This paper addresses a problem that has arisen in building
distributed systems in which incomplete tmst exists and
program composition is necessary. The problem is to permit
authentication for both access control and accounting when
cascading invocations. The problem can be identified as one of
providing cascaded authentication. We have developed a
mechanism we call pussports that are passed along with each
stage of the cascade and digitally signed at each transition. The
information thus signed is that which is critical to the
authentication. The contributions of the WO& axe both in
recognizing the problem and in devising a solution that is
efficient enough to be usable, although there will be some cost
associated with such a mechanism.

1. Introduction
Cascaded authentication is the solution to a set of problems

that have arisen from confederations of autonomous systems.
The problems occur when disparate computer systems are being
called upon to cooperate in the absence of complete trust of
each other. Fwthermore, the systems are utilized in a cascaded
fashion, where one invokes a second, which invokes a third, and
so on, until the fiial service is invoked. The particular problem
addressed in this paper is providing authentication in this
environment given that both accountabiLty and access control
may be required.

The paper begins with an example to explain the problem
further, and then discusses related work. Section 2 presents the
assumptions and goals that must be met by the solution. We
can then discuss providing cascaded authentication by means of
a mechanism called a passport in Section 3. Since cascaded
authentication is based on pairwise, lower level authentication,
a typical pairwise authentication mechanism, that is the one
used in this project, is described in Section 4. Before
concluding, Section 5 describes how passports wiU be supported
in the Mercury System. Section 6 summarizes the work
presented here and the contributions of this work

2. The Problem
In order to understand the problem, we will F i t consider a

hypothetical example of a need for cooperation in the face of
incomplete trust. Because of the incomplete tmst. access
control and accounting are required. Both of these require
authentication, the process of validating clients. The example
leads to a general statement of the problem, assumptions and
goals. The section concludes with a summary of the works that
have addressed similar or related problems or parts of our
problem.

CH2558-5/88/0000/0156$01.00 0 1988 IEEE

Consider making travel arrangements. The travel
arrangements will be made from an office workstation with a
server running at a travel agency. The trip will include ak
travel, prepaid car rental, and a prepaid stay at a hotel. The
company of the traveller has preferences for airlines and car
rental agencies, and the hotel is determined by the nature of the
meeting. Furthermore, there is only one travel agency from
whom the accounts payable office at the traveller's company
will accept direct charges, although they will also accept direct
charges from car rental agencies and the hotel on behalf of the
travel agency. The traveller indicates through the local
workstation to the online travel agency service the dates and
location of the trip, and the hotel that is required. The travel
agency handles the plane reservations but will not deliver
tickets until accounts payable has guaranteed to pay for them.
Each of the other organizations involved, the car rental agency
and the hotel will not accept reservations without prepayment of
a pelrentage of the total reservation. Again the accounts
payable department must guarantee payment. The accounts
payable department has restrictions as well. They will only
accept charges that can be authenticated as having originated
from the traveller. In addition, they require verification of the
organization requesting payment, especially the travel agency,
since they will only accept bills from the one travel agency. In
other words, the travel agency needs to be able to act on behalf
of the traveller. In addition, it needs to be able to allow the car
rental agency and hotel to act on its behalf and in turn on the
traveller's behalf. To summarize, the problem is to permit the
needed but limited authentication without undue burden on the
participants and resources or undue delay.

In order to understand the scope of the problem, it is
important to provide a model of the threats of concem here.
The discussion here is based on the analysis and terminology
presented by Voydock and Kent'. The reader is referred to that
paper for a full description of the possibilities.

Part of understanding the threat model is identlfying our
assumptions about the environment. First, there is an
assumption that at least some of the communication is
transpoaed over LANs, which are easily tapped providing
intruders with easy access to network traffic. Hence, the traffic
is subject to passive attacks. On the other hand, a second
assumption is that the environment is not considered
particularly hostile. We must assume that there will be
situations in which the contants of messages must be kept
private although this may not be the general case. Therefore, in
terms of the threat model and passive attacks, there will need to
be a mechanism for providing privacy, but the other forms of
passive threats, traffic analysis and violation of transmission
security axe not considered part of our threat model.

In the area of active threats. those that involve threats to

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

authenticity are of utmost concem although several others are of
concem as well. Attacks on authenticity can be attempted by
either replaying information that was used correctly by someone
else or by modifying the messages as they pass on the network.
Both are problems and the possibilities of their occurring must
be reduced In addition to modification of authentication
information, modification of the message stream can take two
other forms considered potential threats in this environment.
These are modification of the contents of individual messages
and reordering of a stream of messages. If these and privacy are
of concem. a chain encryption scheme will address all three at
once. Other mechanisms exist for addressing one without the
others. A final area where there is often concem about threats is
in denial of service. Although that may be considered a
possibility, we take the position that it is identified and
prevented by the intervention of humans and we are not
providing a mechanism to address it in this project.

A requirement for authentication that is not part of the threat
model is efficiency. Efficiency takes two forms. First, any
mechanisms proposed to achieve authentication must be
efficient. 'Ihis means that the overhead in using them must be
reduced as much as possible. Overheads occur in the usage of
resources. In the case of communication, expenses can occur in
use of processing time, storage, and the communication
medium. All must be kept as low as possible. The second form
of efficiency is that of minimizing the cost of indicating that one
does not want to make use of the authentication or other
security mechanisms. Since, in the case of a university or other
fairly friendly and cooperative environment, most
communication wil l not require the overhead of complex
authentication and security measures, it should cost as little as
possible not to use these mechanisms. Of course, this also
implies the ability to turn them off. Efficiency is paramount in
both its forms, when adding mechanism to communications
protocols.

Although authentication, access control and accounting are
closely related and mechanisms exist for addressing parts of all
three simultaneously (as our does), the focus of this paper is on
authentication. In light of the above discussions of the
problems and assumptions we can now consider the actual goals
for a solution to the problem to be:

*Unforgeability: it is impoaant that
something be passed to the final destination
to be used for access control and
accountability and that there be a mechanism
not only for trusting that information be
tamper-proof, but also that it be verifiable.

*Accountability: it is often necessary to be
able to track the route of cascaded requests
as part of providing access control.
Therefore, identification of each participant
in the order of their participation is
important. For example, it is important to
the accounts payable office that the requests
from the car rental agency and hotel have
come originally from the traveller and thence
through the travel agency.

Discretionary restriction: at each transit
point the client at that point may want to
restrict access privileges of any service
further down the route before the final
destination. For example, returning to the

example of travel arrangements, if the
traveller has given permission to charge up
to a certain amount for the trip, the travel
agency may want to further restrict the
amounts that the car rental agency ana hotel
can charge, keeping the remainder for air
travel.

Modularity: it is important. especially in a
widely distributed environment, that a client
not need to know the internal structure and
implementation of the services it invokes. In
a situation such as a global network, remote
services at autonomous, but loosely
cooperating organizations either may be
hidden for local security reasons or may
change unpredictably. Returning to the
traveller's example, the traveller should not
need to know whether the travel agency will
bill the accounting office for the car and
hotel or pass those actions off to the
respective organizations.

*Independence: one of the advantages of a
distributed environment, especially when
cascading as described above is available, is
that the client need not be available when the
request is being acted upon. Therefore, a
goal of this project is to permit independent
activity, even when authentication is
required. In the case of the traveller, the
client should not need to be available for
verification of requests since wait listing of
reservations may cause those to occur at any
time. The client may not only go home in
the evening expecting the travel agency to
continue wolking on the travel
arrangements, but may even tum off the
workstation. One should not need to depend
on later verification from the originator or
any other participant.

Combining of identity: i t is often necessary
to be acting as a combination of oneself and
a client. This was the case of the travel
agency requesting payment from the
accounts payable office. Only because a
request comes from the travel agency on
behalf of the traveller might the charges be
accepted.

As a preliminary to presenting the mechanism that will meet
these goals it is first useful to understand the work that has been
done on this subject and related areas. As mentioned above,
Voydock and Kent' provide the best analysis in the public
literature of potential components of threat models. Such a
study is always an important part of understanding security
requirements. Pairwise authentication, which is an antecedent
and supporting mechanism for what will be proposed here, has
been investigated by many researchers. Several early works on
the three way handshake are by Sunshine2 and the TCP
protocol3 for initializing reliable connections and Needham and
SchroedeP*5 for authentication. Otway and R e s 6 have
suggested a more symmetric refinement of the protocol for
mutual authentication. Either of these will suffice for pairwise

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

authentication as a supporting mechanism in the work presented
here. The work here is based directly on Needham and
Schroeder, but incorporates Birrell's ideas of re-authentication
as well7. Birrell et al.' have suggested a mechanism for
cascading trust in authentication servers in cases where no
single authentication server is trusted by the client and server.
It is possible to use such a scheme in conjunction with either of
the pairwise authentication schemes mentioned above. For the
purposes of this work we will assume that either a single trusted
authentication service exists or that cascading as discussed by
Birrell et al. is available. Israel and Linden' have pointed out
the need for accountability in building distributed systems and
Karger'O proposed a mechanism for distributing tickets to be
used for proxy login. The work here can be viewed as a
generalization of the proxy login mechanism. In the area of
authentication, another strong influence on this work was the
development of the Kerberos authentication service by Miller
and Neuman". Here, although a slightly different handshake
protocol was used. the idea of acquiring a collection of tickets
with timeouts as first suggested by Denning and SacCO'* for
later use in authentication was paramount. Since the purpose of
developing these authentication mechanisms has been to embed
them in the Mercury System13, that project is discussed in
Section 5.

3. Cascaded Authentication
As suggested in the example about travel arrangements it is

useful in a distributed environment to be able to allow a remote
service to act on one's behalf, but retain some degree of control
over the actions that the remote service does on one's behalf.
This can be generalized to say that A wants B to see that an
operation is done on A's behalf with some of A's privileges at
C. That activity may be handed off to D or E, before the
requests arrive at C and A wants some control over these
handoffs, but should not necessarily need to know all the details
of these handoffs. We want to capture the idea of handoff and
permit A to set bounds on the actions that B can take on A's
behalf. In turn, B may want to limit further what D can do on
behalf of A and B. Of course, in the end, C will make the final
decisions about control of access in light of A's statements
about who can act on its behalf.

The mechanism proposed here to solve this problem of
handing of limited authentication is called a passport. The
passport identifies the originator and is digitally signed at each
transit point. so that each participating transit point is
identifiable. Furthermore, it includes the limits set or further
constrained at each transit point. Digital signatures imply
encryption. Therefore, in order to give each transit point the
information about the constraints set by previous transit points,
the constraints are also transmitted in the clear. We will
examine the mechanism in more detail and then enumerate how
it meets each of the goals set out above.

The two most important parts of a passport are the
unforgeable identity of the transit points and the constraints or
limits on the actions for which it can be used. The constraints
are passed as data and identitied by encryption with a key that
only the owner (and in the case of a secret key scheme, the
authentication or key distribution server) knows. At each stage,
a transit point takes the passport it has been given, adds any
further constraints or limits it wishes to impose and encrypts
this new information along with the encrypted part of the
passport it received. This sort of re-encryption is repeated at
each stage until the passport e v e s at the final service. There
the whole package is sent to the authentication server (in the

case of a secret key mechanism) for verification by deciphering
in the reverse order of the encryption. This is demonstrated in
more detail below.

It is important to understand how much trust is required and
the cost of a lack of trust. No trust is required, since each transit
point is free to verify the passport by sending it to the
authentication service. Presumably this requires a remote
access, at the cost of a round trip to the authentication service.
Therefore modification in transit can be discovered any time it
is suspected.

In order to verify the passports, several pieces of information
are needed. First, the identity of each transit point must be
known. Hence, these must be included in cleartext. Each
transit point adds its own name at each stage. In addition, it is
important to provide a check that the encrypted material has not
been modified. At each stage, the transit point includes in the
encrypted material the name of the transit point to which the
passport is being sent. When the authentication server
deciphers the passport, it has a simple check that the name of
the owner of the previous encryption key is in the next set of
deciphered data.

There are two other aspects of passports that are important
for effectiveness of the design. The first is the information that
is passed in the clear, and the second is the inclusion of a nonce
in the encrypted material. As mentioned before, each transit
point includes its own name in the clear. In addition, each
transit point includes its own constraints in the clear for two
reasons, efficiency and verification. If the constraints were only
included in the encrypted material, then each transit point that
needed to know them would be forced to decrypt them, which,
in the case of a secret key scheme, would mean invoking the
authentication server, even if tme verification were not the
objective. In addition, including the constraints in the clear
provides a further check when verification is done that the
information that was signed has not been tampered with. The
inclusion of the names in the cleartext does this as well, in
addition to ident@ing to the authentication server which keys
to use for decryption.

A nonce is included in the original passport created by the
client. It must be the first item encrypted. The reason for t h i s is
strictly for security. All the other information that is encrypted
is public knowledge and when coming from a particular client is
always encrypted with the same key. Therefore, it is
susceptible to cleartext attack. Including an unpredictable
number that is only used once means that the material that is
encrypted is not known text. Furthermore, since it is important
to chain the encryptions, all text encrypted after the nonce will
be affected by the encryption of the nonce. As we will see
below, if this degree of threat is not of interest, it is easy to omit
the nonce. It is only needed in the original passport from the
client since each succeeding encryption en route will include
this original.

Constraints or limits on the use of a passport have been
mentioned above. "hey fall into several categories. They may
restrict the cascaded request itself, for example by setting
restrictions on the path that can be used, or they may set bounds
on the actions that can be taken at the final destination. We can
identify several types of constraints on the cascaded request. It
may be important to limit the number of hops that a request can
make. For example, in the travel agency example, the accounts
payable office might have been willing to take requests from
any of several travel agencies, but may refuse to allow one to
hand a request off to another, so there might have been a limit

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

of two on the number of hops. Another limit might be on the
identity of the transit points. In this case, the accounts payable
office would only take requests from certain travel agencies,
certain car rental agencies and certain hotels, but this constraint
can be separated from the number of hops. It also may be the
case that the traveller states that the request must be used within
the next 24 hours. This is one mechanism for limiting potential
misuse of the passport. Another would be a limit on the number
of times that a passport could be used. Each of these constraints
can be checked either by transit points along the way or the
final destination. Of course, the final server must verify them
all.

In addition, there may be constraints on the activities at the
server. For example, it may be that a holder of the passport can
only perform a subset of al l the operations available on the
object in question. In other words, the travel agency will have
permission to decrement the travel part of the budget for the
traveller’s account, but will not have permission to look at the
balances. In addition, there may be limits on the values of the
parameters. There may be an upper limit on the amount that the
planned trip can cost. The accounts payable will refuse
amounts over certain limits. If the travel agency wants to hand
off parts of the trip to the car rental agency and the hotel, it must
hand off part of the limit that it has received to each. This is a
case in which further restriction plays an important role. Other
constraints are certainly imaginable, but these appear to be an
important set.

We can now examine the creation and use of passports.
Suppose A wants B to act on its behalf in doing something at
C. B. in tum will hand off the activity to D. which in tum will
make the request of C on A’s behalf. Throughout this and the
remainder of the paper a secret key system is assumed, although
conversion to a public key system would be straightforward, as
Needham and Schroeder4 demonstrated. We will use the
following notation:

the material within the brackets is encrypted
with key K.
names of principals

the i’th nonce unique to module A

a secret key of module A, known only to A
and the authentication server

the constraints set by A in this passport

{ t K

A. B, C, D

I,,
KA

CA
Therefore, A will pass to B:

In tum, when B wants to hand the passport off to D, it will send

Now, B has encrypted both A’s signed statement and its own
constraint information, and then added to the cleartext its own
relevant information. Thus when D receives the information, if
it trusts B, it need not request that the authentication server
verify or decipher the conditions’, although that can be done at

‘It should be noted that verification of a digital signnturc in a secret key
system, M dcsribcd by Nccdhpm and Schroedcf requires accessing the
autkntication server. 90 it should not be done lightly. In a public key
systcm it involves dccryption with t k public key. Eithcr case will
probnbly require a network access.

any stage. They are available in the clear. D in tum will need
to sign the request as well before sending it to C. This can be
done in the same manner as B did. D may also want to add its
own conditions, to be interpreted by C. At each stage, it is
necessary to trust the sender of a passport. Therefore a passport
can only be sent on a connection where pairwise authentication
already exists. It is possible to piggy-back sending a passport
onto a pairwise authentication protocol; this will be discussed
below in Section 4. Because encryption is necessary in order to
provide digital signatures in passports, the supporting pairwise
authenticated connection need not also encrypt all its data.

A passport can be requested or sent unsolicited at any time,
but the passport must come from the client. A passport
authenticates the client, but does not authenticate the server,
since no information flows from server to client. In addition to
changing the identity of the principal or principals on whose
behalf an action or series of actions occur at the server. the
conditions limiting that action or the conditions of invocation of
the requests can be changed as well.

With the passport mechanism in mind it is now valuable to
review the goals set out for solving the problem of cascaded
authentication. For each goal, the way in which it is achieved
will be indicated.

Unforgeability: unforgeability of passports
is achieved by use of the private keys of the
participants or transit points. Each key is
known only to the individual owning
participant or principal and the
authentication server. Since the
authentication server is trusted with this
information it can venfy the identity of a
participant based on that private password.

Accountability: by including the names of
the participants along the way, and in
paxticular in the encrypted part of the
passport where they cannot be modified,
accountability is provided. We are assuming
that each participant will check that the name
of the transit point from which it receives a
passport matches the name included in the
cleartext portion of the passport. In addition,
we assume that each point encrypts using its
private key. In the case of a single node not
doing this, it will be detected by either the
next transit point down the line, or at worst
during verification. In the case of two or
more transit points working in collusion, not
much can be done with this mechanism other
than being sure that the fist correctly
operating transit point receives a comctly
identified and encrypted passport. There
may be stages in between that are not
identified.

Discretionary restriction: the ability to
include constraints or limitations at each
transit point provides for cascaded
discmionary restrictions.

Modularity: by superimposing signatures on
the passport in such a way that verification is
done only at the end, modularity is achieved.

I59

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

Each transit point needs to know only about
the one to which it is sending the passport
and does not have to know about how that
transit point will achieve its job.

Independence: again superimposing
signatures and permitting such constraints as
time limits on a passport's validity allow for
independent operation. Since verification
can be held off until the final destination is
reached and at that time only the
authentication server needs to be involved,
independence is achieved. As noted earlier,
the less trust exists, the more likely it will be
that the authentication server wi l l be asked to
venfy a paaport at transit points.

*Combining of identity: by cascading and
superimposing signatures it is possible to
identify all the participants in a request
thereby allowing the server to accept
requests only when tha required combination
of principals is involved,

In summary, at this point we have considered most of the
issues surrounding authentication required in cascaded
invocation. We began with an intuitive understanding of the
sorts of cases in which the problems arise, for example the case
of the individual attempting to make travel arrangements
including airline tickets and prepayment for other reservations.
We then set the specific goals of the project within the
constraints of our basic assumptions of the environment,
including an analysis of the threat model. The solution was one
of a mechanism called pussports that can be unforgeably
stamped or signed at transit points along the way. This
depended on pairwise authentication of the participants. so that
will be addressed briefly in the next section, followed by a short
discussion of the the application of this WO& to an existing
heterogeneous distributed system, in particular, the Mercury
System at hflT.

4. Pairwise communication
As mentioned above in Section 3, the passport mechanism

depends on the pairs of transit points that are exchanging
passports being able to trust the identity of the transit points
from which they receive passports. In addition it would be
useful for the sender of a passport to trust the identity of the
recipient. If each receiver trusts the sender of a passport, at
each stage the transitions can be checked at the receiver for the
validity of the path. Providing trusted authentication in both
directions will avoid some amount of work.

There are numerous examples in the literature of pairwise
authentication mechanisms, most notably the work of Needham
and Schroedep that addresses this problem using both secret
key and public key mechanisms. In the case of a secret key
mechanism, four messages must pass between the two
principals as well as two preliminary messages between one of
the clients and the authentication server. Otway and Rees6 have
proposed a mechanism that requires four messages only for
each pairwise authentication, but the problem is that it requires
access to the authentication server for each pairwise
authentication. It is possible, as has been shown by Miller and
Neuman" in Kerberos, to batch the requests to the
authentication server, and then provide timeouts on the tickets

thus acquired. Therefore, the authentication server need not be
involved in each pairwise authentication. By doing this, and
permitting reuse of tickets when re-authentication is required,
the average number of messages in a scheme similar to
Needham and Schroeder's can be brought arbitrarily close to
four. Since the focus of this work is on cascaded authentication
and not pairwise authentication, we will choose to use a scheme
similar to Needham and Schroeder's. as well as the three-way
handshake of T@ and Denning and S a c ~ o ' ~ . This will allow
for more independence from the authentication server, since it
need not be available whenever authentication is needed.

Besides to the requirement of bilateral authentication, there is
an additional requixement that an authentication server be
provided that is trusted by both principals, or at a minimum
there be one that each trusts and they trust each other. This can
be extended to say that the principals involved must trust
authentication servers that fall into a single closure of
authentication servers that trust each other. B k l l et al.* have
demonstrated an algorithm for achieving this. For simplicity a
single authentication server will be assumed here..

In addition to the notation used in Section 3, the following
will be used to outline a possible protocol for pairwise
authentication.

T a time stamp

CK a conversation key generated by the
authentication server and exchanged by to
authenticating principals

AS the authentication server
Communication will be assumed to occur instantaneously

and lines with arrows will indicate the direction of flow of a
message. Time moves down the page.

A AS

B. IA

>
{IA,B,CK,T, I c K , T . A) s) K ~

For principal A to acquire a ticket to talk with another
principal B and an encryption key to be used for that pu~pose
requires two messages. The first is sent in the clear. There is
no need for encryption here, since the only information is the
identity of the principal B and a nonce I The nonce is a

number that is unique and provides the basis for a challenge of
the authentication server by A. The authentication server meets
the challenge by retuming to A a message that is encrypted with
A's private key KA (known only to A and the authentication
server) containing IA , @roving that the authentication server
knew A's key), B's identity, CK the key for communication
between A and B, T the time to live for that key, and an
unforgeable ticket that A can later hand to B. The ticket is
unforgeable because it is encrypted with the secret key known
only to the authentication server and B. The ticket is used by
sending it to B which will use KB to decrypt it and will find A's
name inside; this could only have been done by the
authentication server. Further verification of A by B will be
seen below. This protocol allows A to venfy the response to its
request as coming from the authentication server and provides a
secret short-lived key for authentication and encryption with
B. The fact that the keys are short-lived is part of the

A;

1

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

mechanism for preventing the forms of false authenticity
identified by Voydock and Kent. If a key is compromised or
stolen, its period of validity is limited. Authentication and key
exchange for encryption can be piggy-backed on connection
initialization, but can also be repeated at later times if the
information has been deleted or needs to be changed. The
reasons for repetition or modification are related to permitting
connections to quiesce or be used on behalf of other principals.
These reasons for repeated authentication will be discussed
further in Sections 5.

Efficiencies can be achieved here in two ways. The first is
suggested by Kerberos, in which requests to Kerberos can be
batched. merefore, rather than incurring the ex nse of two

not decrypted here) for each connection created by A, there will
be two messages and 2N+1 encryptions and 1 decryption for N
connections created by A. Of course this can only be done when
A can p d i c t the N connections. There is a tradeoff in
acquiring a set of keys, because they come with timeouts. If
they are not used within their periods of validity, there is a
wasted cost of transmission of them. The second form of
efficiency occurs if the authentication server and the location
registry are the same, allowing requests for finding principals to
include the acquisition of the encryption key and ticket for a
connection to each module. Such efficiencies become
important during usage of such mechanisms.

messages and two encryptions and one decryption r (the ticket is

Once the ticket and encryption key are known, A can initiate
an authenticated connection with B, as shown here.

A B

\

A opens the communication by sending the authenticated ticket
previously acquired from the authentication server and a nonce
encrypted with CK to B. B uses KB to decrypt the ticket,
verifying that this ticket was supposed to have come from A,
and learning CK and T the timeout for it. CK is then used to
decrypt the nonce. Both this nonce and I the nonce sent by B
to A are challenges. The way the challenges are met is by the
recipient decrypting the challenge, modifying it in a known way
(in this case subtracting one), and retuming the modified
version re-encrypted. Only if the key is known by the recipient
can this be done correctly, and therefore this proves the identity
of the recipient. Neither A nor B will send real information, the
data or reply, until its challenge of the other has been met
successfully. So A only sends its data in the third message,
since B replied successfully to the challenge in the second. If A
also includes its reply to B's challenge in the third message,
then B can reply to the data in the fourth message. The
challenges and responses using the nonces directly counteract
the threats of "playback' and "false identity". Passing a

B,

'An cxryption costs the s m m as a decryption in the DES.

passport can occur once A trusts B; therefore the passport can
also be sent in the third message of the algorithm along with the
data. In fact, it must be sent before the data since it implies a
possibility of changing the identity of the principal on whose
behalf the information in the data is to be used.

Attacks on integrity, ordering of messages and release of
message contents can be prevented by use of encryption of the
message data and replies. Since a conversation key has been
exchanged this is possible without the threat of compromising a
long-lived key, but involves encryption of everything on the
connection. The basis for that encryption, the seed for the
chained encryption, is the same key CK, known by A and B.

The cost of creating an authenticated connection must be
counted in terms of both additional messages and number of
encryptions and decryptions. The protocol laid out above
requires two additional messages beyond the data and reply
messages, plus an average of, at most, the one additional
message for accessing the authentication server as described
above. There are 7 encryptionddexryptions (encryption of the
ticket is done in the authentication server and not part of this
protocol) in the handshake, and an average of at most one and a
half in accessing the authentication server. If the connection
requires encryption of data there is the additional expense of
that encryption as well.

It is important to address the effects on authentication of
special or exceptional conditions on the connection. This will
be considered in Section 5 once the Mercury System itself has
been reviewed.

To summarize, for pairwise connections, authentication can
be provided by mechanisms similar to those of Needham and
Schroeder or a w a y and Rees. We have chosen a scheme
approximating the former in order to avoid interactions with the
authentication server at the time of each authentication. This
pairwise authentication is necessary as part of the support for
cascaded authentication as we have realized it in passports.

5. Design of an implementation
The purpose of designing authentication mechanisms is to

permit use of them. Therefore, it is valuable to understand the
usage of passports and their supporting mechanisms in the sort
of distributed system for which they were designed They were
designed specifically to solve authentication problems in the
Mercury System, a heterogeneous system at MlT.

The Mercury System has two high level goals of importance
to this piece of the project, program composition and
heterogeneity. Program composition means that it should be
possible within the system to invoke programs or services
across language boundaries. The second goal is suppoxting the
existing heterogeneity inherent in the choice of languages,
operating systems, and hardware. The combination of these two
has led to a commitment to providing a common underlying
communications semantics that is reflected in each language as
an extension to that language. These extensions are known as
the language veneers.

The underlying model has two parts that are relevant to
authentication and access control: the model of active entities
and the semantics of invocation. It is necessary for
authentication to understand the nature of a principal in
Mercury. Figure 1 depicts a layered model of Mercury. A
module is a principal, the unit of authentication. Mercury

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

consists of modules each running at a single location, although
there may be more than one module at a location. A module
can be thought of as a service or program running at a specific
location, having remotely invocable procedures or ports. In
addition, a module contains one or more threads of control,
known as ugenrs. A remote invocation is done by an agent in
one module to a port in another. Furthermore, invocations on a
group of ports for a single module from a single agent can be
sequenced. A set of streams
between a pair of modules can share a connection. Thus a
module is a principal and resides at a single node. It provides
ports and supports a collection of agents. Messages flow
between two modules on a bidirectional connection, and a
connection can support a collection of one-way streams
between agents and sets of ports.

This is hown as a stream.

Passports

Passports

Pairwise Auth.

Connect ion

Network

Figure 1: Communication in Mercury

The usage of pairwise authentication and then passports on
top are mapped onto the Mercury model of computation as
follows. A connection will support pairwise authentication,
because each module is a principal and a connection is the
means of communication for a pair of modules. When an agent
invokes a port it will do so as a component of its owning
module, unless it has been given a passport to act on some other
module's behalf. The agent will be using a stream for
invocation of a set of ports. If the stream is to be used on behalf
of another module, the agent will hand a passport to the

receiver. The passport will then be handled as described in
Section 3. It may be verified or handed along further. If the
stream is to be used on behalf of another module only
temporarily, yet another passport will be passed along later. If
the stream is to be retumed to being used on behalf of the
original module, a simplified form of a passport can be used,
essentially null, indicating a reversion to the original state.

We can now consider means of providing greater efficiency,
in addition to those means already mentioned of piggy-backing
a passport on connection level authentication and the null
passport indicating a return to the default state of authentication.
Two other mechanisms to improve efficiency are possible in
creating passports, flags indicating the presence or absence of
particular constraints and hashing the constraint values. Since
every constraint is optional, we will use a one bit flag for each
constraint identified in Section 3 indicating its presence or
absence. Thus indicating no constraints requires one bit for
each potential constraint. If constraints are present, using a
pre-arranged hashing function on the constraints in both the
encrypted and cleartext forms again pennits a reduction of the
number of transmitted bits. Thus we can reduce to a small
number of bits the ability to not use authentication, and reduce
the number of bits for the contraints by hashing.

There are three special conditions that must be considered
when building the pairwise authentication mechanisms:
connection quiescence, connection exception of failwe, and
authentication or encryption failure. First, Mercury permits a
connection to quiesce, thus allowing information about it to be
forgotten by one or both ends of the connection. In this case,
re-authentication must be done when the connection is re-
established. This is not as simple as it may seem, because,
although a connection is bidirectional, it is not completely
symmetric since one end or the other acquired a ticket from the
authentication server in order to initiate the authenticated
connection. There are several possible solutions to this
problem. One is that the origianl initiator of the connection
acquired two tickets, one for each direction, that have not been
forgotten. In this case, either end may re-initialize the
connection. A second is that the original holder of the single
ticket still has it and re-initializes the connection, assuming it
knows to do so. If both of these fail, a new ticket must be
acquired. In any case, this is not a difficult problem, but must
be addressed.

The second special condition that must be addressed is that
of handling authentication and encryption in the face of an
exception on or a failwe of the connection. When an exception
occurs at the connection level, causing the connection to break,
re-synchronization will be needed if chain encryption was being
used on the connection. In addition, if either end distrusts the
authenticity of the other, re-authentication may be required as
well.

The third and final exceptional condition that must be
considered is the failure of authentication or encryption, and
how that will affect the connection on which it is occurring. If
there is some failwe in either authenticating or the
cryptographic activities, this must have the effect of breaking
the connection. The reason for this is that the authentication
and encryption are begin performed only because one or both
participating modules require it. If that cannot happen, the
connection should not be used. Once valid authentication can
be re-established, the connection can be reused.

We must also understand what happens under three
interesting conditions on streams: the stream breaks,

I62

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

authentication/authorization fails, and the stream quiesces.
First, if the stream breaks for some reason unrelated to
authentication and authorization, but the state of the stream is
not forgotten, nothing needs to be done in terms of
authentication in order to restart the stream. In contrast, if
authentication or authorization fails, the stream must be put into
the broken state because succeeding operations should fail, until
the authentication or authorization problem has been resolved.
Therefore, once the stream has reached the broken state due to a
problem with authentication, in order to restart, a valid passport
must be sent to the server. To avoid the need for two types of
broken state, one for a security failure and one for everything
else, we require that a valid passport always be sent on
restarting a stream. (It should be noted that a valid passport can
be the null passport representing the module in which the agent
resides.) The final issue is what to do if the stream quiesces and
therefore can forget its state. In this case. since the principal
may have been changed and may not be agent’s own module’s
principal and that information can be forgotten, when the stream
is restarted a passport will have to be sent as well. Since all
stream information can be forgotten and since, for a particular
stream, several passports may be used at different times,
passports should be stored somewhere besides only with stream
state.

6. Conclusion
In this paper we have investigated the problem of cascading

and combining authentication as invocations of remote services
are cascaded. The problem can be partitioned, so that pairwise
authentication is provided first and the cascading can be done
on top of that. Furthermore, we have demonstrated that
efficiency is possible where needed, although it will always be
the case that if encryption is required, there will be costs
associated with it. The mechanisms proposed for achieving
these kinds of authentication are based largely on the work of
Needham and Schroeder, Birrell, and Karger. The contributions
of this work are twofold. The first is in the recognition that a
problem has arisen from the combination of distributed systems
and incomplete trust among the components of such a system.
The problem is that of cascaded authentication. The second
contribution is in the generalization of the ideas of capabilities
and tickets for proxy login here called passports that are a
solution to the problem of cascaded authentication.

References
V. L. Voydock and S . T. Kent, “Security Mechanisms
in High-Level Network Protocols”. Computing
Surveys,Vol. 15, No. 2, June 1983, pp. 135-171.

C. S. Sunshine, “Interprocess Communication Protocols
for Computer Networks”. Tech. report 105, Digital
Systems Laboratory, Stanford University, December
1975. This was also submitted as a doctoral thesis.

DDN Netwodr Information Center, “Transmission
Control Protocol”, in DUD Military Standard
Protocols, E.J. Feinler et al., eds., DDN Network
Information Center, SRI Intemational, Menlo Pa& CA
94025, DDN Protocol Handbook, Vol. 1, 1985, pp.
1-147 - 1-324, ch. 6.2. The protocol is MILSTD 1778.
This work is also reported in NIC RFC 793, edited by
Jon Poste1 at USC Information Sciences Institute.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

R. M. Needham and M. D. Schroeder, “Using
encryption for authentication in large networks of
computers”. CACM.Vo1. 21, No. 12, December 1978,

R. M. Needham and M. D. Schroeder, “Authentication
Revisited”. Operating Systems Review,Vol. 21, No. 1,
January 1987, pp. 7.

D. Otway and 0. Rees, “Efficient and Timely
Authentication”, Operating Systems Review,Vol. 21,

pp. 993-998.

NO. 1, January 1987, p ~ . 8-10.

A. D. Birrell. “Secure Communication Using Remote
Procedure Calls”, CSLTR 84-2, Xerox Corporation,
Palo Alto Research Center, September 1984.

A. D. Birrell, B. W. Lampson, R. M. Needham,
M. D. Schroeder, “A Global Authentication Service
without Global Trust”, Proc. of the I986 IEEE
Symposium on Security and Privacy, IEEE Computer
Society Press, Oakland, CA, April 7-9 1986, pp.

I. E. Israel and T. A. Linden, “Authentication in Office
System Intemetworks”, ACM Transactions on Ofice
Information Systems,Vol. 1, No. 3, July 1983, pp.

223-230.

193-210.

P. A. Karger, “Authentication and Discretionary Access
Control in Computer Networks”, Computer Networks
and ISDN Systems,Vol. 10, No. 1, January 1986, pp.
27-37, This paper was reprinted in Computers and
Security, 5 (1986). 314-324

S . P. Miller and C. Neuman, “Kerberos: Project Athena
Technical Plan -- Authentication”, Release 1.0

D. E. Denning and G. M. Sacco, “Timestamps in Key
Distribution Protocols”, CACM,Vol. 24, No. 8.
August 1981. pp. 533-536.

B. Liskov, T. Bloom, D. Gifford, R. Scheifler,
W. Weihl, “Communication in the Mercuxy System”,
Hawaii International Conference on System Science,
University of Hawaii, Kailua-Koni, Hawaii, January 5-8
1988.

I63

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 13:35 from IEEE Xplore. Restrictions apply.

